Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wheelchair users (WCUs) face additional challenges than non-WCU to multi-tasking (i.e. open doors, cook, use a cell-phone) while navigating their environments. While assistive devices have attempted to provide WCUs with mobility solutions that enable multi-tasking capabilities, current devices have been developed without the input of end-users and have proven to be non-usable. More balanced approaches that integrate the end-users’ voices may improve current assistive technology usability trends. This study sought to empathically understand the lived experience of WCUs, their needs towards a mobility device, and their perceptions towards hands-free mobility. Full-time WCUs and care providers participated in semi-structured interviews examining wheelchair use and perceptions towards current and future mobility devices. Thematic analysis was used to analyze interview data. 9 WCUs (aged 32.1 ± 7.0 years; wheelchair experience 17.9 ± 11.6 years) and five care providers (years caring for WCU 3.75 ± 0.96 years) participated in the study. The most common disability type was spinal cord injury (WCUs: n = 3; care providers: n = 3). Qualitative analysis revealed four key themes: (1) Current wheelchair usage, (2) WCU and care provider perspectives, (3) Future wheelchair, and (4) Hands-free wheelchair. Accordingly, participants desire bespoke, light-weight mobility devices that can through tight spaces, access uneven terrain, and free the hands during navigation. This study provides meaningful insight into the needs of WCUs and care providers that assistive technology innovators can use to develop more usable assistive technologies. Amongst study participants, the concept of a hands-free mobility device appears to be usable and desirable.more » « less
-
The current state of function and design of accessible assistive technology is lacking, evidenced by low usability and high abandonment rates by people with disabilities (PwD). A significant contributing factor to these negative outcomes is a lack of user-centered design or user-opinion in the product development. The Human Performance and Mobility Maker Lab (HPML) at the University of Illinois Urbana-Champaign is a new facility dedicated to developing assistive technology by PwDs. Rather than being excluded from the design and innovation process, PwDs are the primary drivers of innovation at the HPML. The HPML’s the central tenet is ‘Designed by, not designed for’. The purpose of this paper is to explore various assistive technologies developed in the HPML while providing an empathic framework for other research groups to follow in integrating PwDs into the development and design of assistive technology.more » « less
-
A novel wheelchair called PURE ( Personalized Unique Rolling Experience) that uses hands hands-free (HF) torso leanlean-to -steer control has been developed for manual wheelchair users (mWCUs). PURE addresses limitations of current wheelchairs, such as the in ability to use both hands for life experiences instead of propulsion. PURE uses a ball ball-based robot drivetrain to offer a compactcompact, selfself- balancing , omnidirectional mobile device. A custom sensor system convertconverts rider torso motions into direction and speed commands to control PURE, which is especially useful if a rider has minimal torso range of motion. We explored whether PURE’s HF control performed as well as a traditional joystick (JS) human human- robot interface and mWCUsmWCUs, performed as well as able able-bodied users (ABUs). 10 mWCUs and 10 ABUs were trained and tested to drive PURE through courses replicating indoor settingssettings. Each participant adjusted ride sensitivity settings for both HF and JS control . Repeated Repeated-measures MANOVA tests suggested that the number of collisions collisions, completion time time, NASA TLX scores except physical demand , and index of performance performances were similar for HF and JS control and between mWCUs and ABUs for all sections. Th is suggestsuggests that PURE is effective for controlling this new omnidirectional wheelchair by only using torso motion thus leaving both hands to be used for other tasks during propulsion propulsion.more » « less
An official website of the United States government
